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SUMMARY

Multilevel analyses have become an accepted statistical technique in the field of education where
over the past decade or so the methods have been developed to explore the relationships between
pupil characteristics and the characteristics of the schools they attend. More recently, widespread
use has extended to other social sciences and health research. However, to date, little use has been
made of these techniques within the health economics literature. This paper presents an
introductory account of multilevel models and describes some of the areas of health economics
research that may benefit from their use.

KEY WORDS - multilevel models, hierarchical models, fixed and random effects

JEL CLASSIFICATION: I1, C1

INTRODUCTION

There has been a long standing interest within the social sciences in the association between
individual level characteristics and higher level factors such as community effects or
societal/geographical contextual effects (see for eg., Blalock,' DiPrete & Forristal®). More recently,
this interest has extended to relationships between individuals and characteristics of the institutions
to which they belong, most notably in assessing ‘effectiveness’ or ‘performance’ of public
institutions.” The investigation -of such relationships has historically posed difficult analytical
problems due to a lack of sufficient ‘micro’ level data. Ensuing studies have often relied on data
aggregated beyond the basic unit of analysis, resulting in analyses that are often prone to criticisms
associated with the ecological fallacy*® (‘macro’ level associations are wrongly infered to exist at
the ‘micro’ level). More recently there has been a general shift from placing emphasis on ‘macro’
level agents to incorporating both ‘micro’ and ‘macro’ level relationships and observations in
empirical work. This, in part, has been due to the advancement of statistical techniques that
adequately address the methodological problems imposed by the hierarchical or nested structure
inherent in the requisite data. Since individuals are clustered within higher level groups (for
example, households or general practices), which themselves may be clustered within further
groups (geographical areas, or administrative districts), a correlation structure is imposed on the
data which invalidates classical assumptions of independence and hence, common techniques such
as ordinary least squares (OLS) will be inefficient. Further, a single level approach to the analysis
of such hierarchically clustered data may fail to fully exploit the richness of information contained
within and between the various levels being considered.

Over the past decade theoretical developments enabling nested data structures to be analysed
within a generahsed lmear models framework have been progressed under various gulses most
notably multilevel models,® random coefficient models’ and hierarchical linear models® (hereinafter
multilevel models specifically will be discussed in this paper). However, until recently a lack of
appropriate software required to perform such analysis rendered these techniques inaccessible to a
wide audience. Multilevel models are generally used to analyse data that fall naturally into
hierarchical structures consisting of multiple macro units (contexts) and multiple micro units
within each macro unit. Emphasis is placed on defining and exploring variations at each level of
the hierarchy after conditioning on the set of explanatory variables of interest. The primary focus
therefore lies in the estimation of the magnitude of variances operating at different levels and how
such variances are related to explanatory variables. This contrasts with the more familiar



econometric approach of viewing higher level effects as nuisance parameters to either condition on
or adjust for to achieve desirable properties of fixed part parameters. This is most common where
it is believed, a priori, that one or more explanatory variable is correlated with the higher level
effects. In such circumstances, to obtain consistent estimates of the fixed part parameters, higher
level effects are often modelled in order to avoid endogeneity bias (we expand on this issue later in
the paper). The explicit modelling of variances associated with the errors at each level of the
hierarchy in a multilevel model is of direct interest.

Recent widespread availability of specialist software packages, a useful review of which is given
by Kreft et al,” enabling the routine use of multilevel techniques has prompted researchers from
various disciplines to adopt a hierarchical approach in their work. Today, examples of the
application of these methods can be found in such diverse areas as education, ™ crirninology,11
sociology,” geography,'™" epidemiology," health policy and health services research.'™'® 1t is
proposed that multilevel models can also offer health economists a valuable tool facilitating greater
substantive insight into the processes generating research data and will compliment existing more
familiar econometric techniques. A further shift in emphasis from aggregate to micro level data as
predicted in a recent editorial appearing in Health Economics'” will only serve to encourage the
application of methods such as these.

This paper presents an introductory account of multilevel models, including a brief discussion of
areas of health economics research that could potentially benefit from the use of these techniques.

BASIC MULTILEVEL MODEL

To illustrate the basic structure of a multilevel model we take as an example the most simplistic
model consisting of two levels which may represent patients nested within provider units (see
Figure 1). y; represents the response of interest which is related to a vector of explanatory

variables X in the following manner:
Yi = g(B,xij)+Wij (1

where w;; =u; te, and g() represents a link function to specify the function form of choice.

The following discussion outlines a model with a linear link function, but may be generalised to
nonlinear models in a straight forward way.

Subscript i (i = 1,...,N) represents individuals (patients) and subscript j (j = 1,...,M) provider units.
In this specification the overall error term (W ;) is decomposed into e;; and u;, where e is the

random error term for the i-th patient within the j-th hospital, assumed to have zero mean and
constant variance 0‘2 . The effects of hospitals are estimated through u; which is assumed random

and again has a mean of zero and constant variance 0‘3 . We also have cov(e,,u;) =0, that is,

we assume that patients and hospitals are uncorrelated. This appears a reasonable assumption to
make but it may be restrictive in some applications. For illustrative purposes, the indexing of the
set of explanatory variables in model (1) assumes a set of variables measured at the level of the
patient. However, this is for notational convenience only and often variables measured at all levels
are of interest (a variable measured at level 2 is usually indexed as x b both in terms of their

ij?



associated parameter estimates and their effects on the estimates of variances.

For the i-th patient within the j-th hospital model (1) leads to an expectation of, E(y; ;) = B’x;,

and a conditional variance of var(y;IB’x;)=0 2 =62 +02, and hence, the overall variance is

‘partitioned’ into components for both hospitals and patients. The partitioning of the variance in
this manner leads to the ‘intra group correlation coefficient’ p= Gﬁ(ci + ()'Z)_1 (note,

cov(u; +e;;,u; + eilj) =cov(u;,u;) = 0'3) which measures the strength of ‘nesting’ within the

iyj?
data hierarchy and is fundamental to the estimation procedures. In the basic formulation presented
here, model (1) is often referred to as a variance components model. The analogous models found
in the econometrics literature are referred to as ‘error component’ models (see, for example, Judge
et al®) and in particular, examples can be found in the context of nonlinear budget sets

(Hausman,** and Moffitt™).

In the presence of a non-zero intra-group correlation, estimation proceeds through the use of
generalized least squares. For each of the ‘higher level’ groups j, we define a covariance matrix;

— — 2 2
covi(yy)=V;=0o.l, +0.J,,

where I is the identity matrix, J a matrix of ones andnthe

number of individuals within the j-th group. Extending this over all higher level groups (hospitals)
results in a block diagonal structure as depicted in Appendix I.

PARAMETER ESTIMATION

Various estimation routines have been developed for the analysis of hierarchical data structures,
however here we concentrate on those specific to multilevel models developed by Goldstein.® Model
estimation is based upon an iterative generalised least squares (IGLS) procedure that results in
consistent and asymptotically efficient estimates of . Using matrix notation, estimates of the

fixed coefficients and their associated covariances are given in the familiar way:

B = (XTY"X)“XTV"Y Q)
and cov(B)=(X"Vv'X)"

where V is the block diagonal covariance matrix. However, V is unknown and the method of
obtaining starting values for B in its absence is achieved by performing an OLS estimation for the

first iteration (i.e. assuming V =1I6%). Once this is done, a vector of raw

. <t ~ ~ a7 . . .
residuals W = {Wij} (W =y -B X;) is formed together with the cross-product matrix:
(W =WW"). Each ij is an estimator of O (=0 +0G2) and each W W, (J#k) is an
estimator of G ; hence for the j-th higher level unit:

T — o7
Vj—Wjo



Aok *

We write E(W) =V and W = vec(W), where vec is the vector operator stacking the columns

*

of W underneath each other. This is then regressed on Inj +J, to obtain consistent estimates of
J

2 2
O, and G .

The estimates of 6> and G- are used to construct V which in turn is used in a GLS estimation of

the fixed part parameters. Once the fixed coefficients are obtained, updated residuals are formed,
and the random parameters estimated once again. This procedure is repeated until some specified
convergence criteria is reached. At convergence, assuming multivariate Normality the estimates are
maximum likelihood. For further details the reader is refered to Goldstein®*® and Hsiao.”

In general IGLS leads to biased estimates of the random parameters (in the models presented thus
far: 62 and G1) since no account is taken of the sampling variation of the fixed part explanatory
variables. This may be problematic in small samples. A restricted iterative generalised least
squares (RIGLS) or restricted maximum likelihood approach involving a slight modification of
IGLS leads to unbiased estimates (refer to Goldstein® for full details). This involves the addition of
a correction term to the estimation of V at each iteration based on the set of explanatory variables

and the previous estimate of V. Under multivariate Normality and assuming V = 61, applying
the correction term leads to the usual formula for the unbiased estimate of G~ given by
6% =s*/(n—~p), where p is the number of explanatory variables. Efficient computational
methods for these techniques are given by Goldstein and Rasbash.”

The above estimation procedures are particular to multilevel models proposed by Goldstein.® Other
estimation procedures developed specifically for hierarchical data structures have been proposed
elsewhere. Longford’ developed a procedure based upon a ‘Fisher scoring’ algorithm which has
been shown to be formally equivalent to IGLS® and forms the basis of the program VARCL.*
Bryk and Raudenbush® describe the use of an EM algorithm based on an ‘empirical bayesian’
approach and incorporates this in the program HLM.? Another approach is that of Generalized
Estimating Equations (GEE) by Liang and Zeger;”> however this is principly concemed with
estimates of fixed part parameters (for explanatory variables) rather than exploring the random
part. A short review of these procedures is given by Goldstien® (p23).

RESIDUAL ESTIMATION

Often in empirical analyses, the size of the higher level effects in addition to the estimates of
variances are of interest particularly in exploratory analyses, in the reporting of results and for
diagnostic purposes. These are obtained in the following manner.

For the linear two level multilevel model:

Yy = B,Xij +u; +ey



the level 2 mean group effect for the j-th group may be estimated by the within level 2 sample

mean W; = ZWU /n;, where Wij =Y ——flij, or it could be estimated by the overall sample
i€j

mean W = zz \%% i / N , where N is the total sample size. If the between level 2 unit variance
i

were equal to zero (i.e., no systematic difference among level 2 means) then the overall mean would

represent a suitable estimate for each of the level 2 effects, and if the variance within level 2 units

is represented by G2, then the overall sample mean has a variance 6> / N . If this is not the case
and the level 2 variance is large compared to the total variance, then an unbiased estimate for each
of the level 2 means is provided by the within level 2 sample mean. However, this estimate, (with a

variance of 6> /n i), although being unbiased is less efficient. Most applications will consist of

intermediate cases where it may be possible to do better than simply to use the ‘raw’ level 2 group
sample means (based on mean squared errors) and the two estimators can be linearly combined in
the following way to define ‘shrunken’ estimates of the level 2 group means (denoted W hs -

W, =8W;+8,W,

The weights s and s, (s, +8, = 1) are proportional to the inverse of the respective mean squared

errors of the estimators. This leads to a ‘shrinkage’ estimator for the level 2 group mean effects
defined as:

A= _ j
U =W =

i W, (refer to appendix II)

As the number of level one units within a particular level two unit (n;) decreases the ‘shrinkage

factor’ increases reflecting the lack of information in the group so that the estimate becomes shrunk
towards the mean estimate for the total sample (i.e. the overall population value). This is a method
proposed originally by Stein® and expanded upon by Efron and Morris™ and is common in the
production of, for example, cancer maps.”>*® The estimated effect for any one hospital (for
example) is not solely based upon its own data, but also by taking account of the effects for other
hospitals and the characteristics of the distribution they share. Higher level groups containing
relatively small numbers of units can be included in the analysis and their effects adjusted
according to the relative lack of information contained within the data. This contrasts with a fixed
>ffects approach, where the relative lack of information is reflected through the associated
estimated standard error. If we were to ignore the ‘shrinkage factor’ then the higher level estimates
would be based on the mean estimate W; alone, with little indication of the precision of a

particular estimate. The approach is consistent with the assumption that higher level units belong
to.a population of units and that inferences are to be made about populations.

RANDOM COEFFICIENTS

It is concievable that the relationship between an explanatory variable and the response is not the
same across all hospitals. Certain hospitals may have the effect of increasing the average response
(for example, length of stay) of younger patients (compared to a national average) whilst



decreasing the stays of older patients. Different hospitals may treat what appear to be similar
patients in a different manner, and that this difference may be related to some characteristic of the
patient such that a uniform relationship across all hospitals (as assumed by (1)) is not a correct
specification.

The exploration of different ‘higher level effects’ can be obtained by the inclusion of random
coefficients (see also, Hsiao”, chp 6 on variable coefficient models) such that the slope effect
associated with an explanatory variable (X ;) can be represented by:

2.
Yi :[3xijerjxij+uj+eij (3)

In (3) we have three random terms, two of which are random at the hospital level, ¥ Xy and u;.

Each of these has a variance and generally there will be a non-zero covariance between them, such
that:

2
var(u;) =0,

2

var(yY;) =0,

cov(u;,Y;) =O

leading to the conditional variance:

var(y;lx;) = 02} +0, +20,,x; + o’

and covariance:

COV(Yij’ijlxij’xkj) = Gixijxkj + Gi +0,, (X — Xy)
which forms the block diagonal covariance matrix V .

The above highlights the use of random coefficients by allowing regression coefficients to vary
across level 2 units. However, we can introduce more complex variance structures at any level of
the hierarchy including level 1 and this may lead to substantively interesting interpretations and
better model specification. A simple example of a complex level 1 variation is to make it a linear
function of an explanatory variable. For example, suppose we wish to model individual alcohol
consumption and we have data from a household survey consisting of a natural hierarchy of
individuals within households within perhaps areas of residence. It seems sensible to assume that
not only is the average alcohol consumption of males greater than females, but also that the
variation in consumption is greater for males than females. We can accommodate and test this
assumption by expanding the level 1 variance terms in the following manner. Suppose dij is a

dummy variable representing males, then we can include an extra level 1 residual term associated
with this variable, such that:

Yy = B,Xij +(uj €, +elijdij)



where

2
var(ey; ) = Oy

2
var(e;) =G,

cov(e,; e ) =0

The contribution to the overall variance at level 1 is now a linear function of dij , leading to:
ol=0+ GZldij with the necessary condition that 6> 2 0.

Specifying the level 1 variance as defined above is simply a device for obtaining the correct form of
the variance function that we require. Notice that the same result could be obtained if d;; was a

dummy variable representing females. However, in this case the estimated variance attached to
d; would be negative, although the overall variance at level 1 would still be positive. For

presentational purposes this appears somewhat missleading and in the absence of prior knowledge
of the likely magnitude of the variances a more flexible specification is given by constraining the
variance term to be zero, whilst allowing the covariance to be estimated:

2
var(ey;) = Oy

var(e,;;;) =0
CoV(e,;€155) = gy
with

ol =02, +20,,d;,and G, 20

Constraining the variance parameter to be zero in the presence of a non-zero covariance is again a
device used to obtain the required variance structure, and leads to the same estimated level 1
variance as before. This example illustrates a simple form of the level 1 variance and more
elaborate variance functions including quadratic terms may be desirable and can be specified
accordingly.

EXTENSIONS TO THE BASIC MODEL

The models discussed thus far represent the most basic form of a multilevel model where a
continuous response is linearly related to a set of explanatory variables and the structure of the
hierarchy is simple. In terms of the contributions to health and health economics research more
complex multilevel models may have the most to offer. In its simplest form the hierarchy consists
of two levels as specified in equation (1). However, extensions to further levels are straightforward,;
for example, we may be interested in the efficiency of both clinicians and provider units when
assessing performance. In such a situation the hierarchy consists of patients within clinicians
within provider units and a multilevel model containing three levels is required (see Figure 2):

2
Yix = B X TVt +Cy @



Interest here lies in the variance estimates 62, G2, and G together with fixed part parameters.

The inclusion of random coefficients at any of the levels may also be of interest. Alternatively, data
may consist of a series of repeated measurements on patients attending different hospitals. Again,
this structure can be comfortably modelled using three levels: observations within patients within
hospitals.

In the example given above of patients within clinicians within provider units its is unlikely that the
hierarchy will be simple, and that, in reality, clinicians will operate in more than one provider unit.
In such situations the hierachy is termed cross-classified. This occurs when individuals within a
lower level cluster are grouped into a different higher level unit than peers from the same cluster
(see Figure 3). Such model specifications, although being computationally more demanding,” can
nevertheless be handled using appropriate software®. In Figure 3, the cross-classification occurs at
level 2 and each separate cross-classification can be viewed as forming a distinct cell. The
structure is then modelled using variance components (one for clinicians and one for hospitals) at
level 2 and a single variance term at level 1. In notational form the variance components forming
level 2 are represented by the subscripts j and j,, and classifications at the same level are

grouped within parentheses. The general form of a cross-classified model can be written as follows:

- Z.
Yig = BXigy T U5, T,

The covariance structure at level 2 can be written in the following form:

_ 2
COV(Y iy Vi) = O,

)
COV(Y i) Yriin) = O,

_ 2 2
var(yi(hh)) - Cov(yi(hh)yi/(hjz)) - cy“l +G“7.

In this formulation the level 2 variance is the sum of the two separate classification variances, and
the covariance for two level 1 units (patients) in the same classification (cell) is equal to the
variance for that classification. Therefore, two patients who share the same clinician but different

hospitals have a covariance Gil , and patients who share a common hospital but different clinicians

have a covariance of 632 .The covariance for two patients who do not share either classification is

zero. The procedure allows estimates of the variances to be obtained and hence the outcomes
across individuals can be ‘partitioned’ into that due to differences between individuals, clinicians
and hospitals. In this way, the relative importance of each of the higher level effects may be
assessed.

Much of health data do not conform to a simple model specification such as a continuous response
and/or linear link function and further extensions of (1) to incorporate generalized linear models
(refer to McCullagh and Nelder®) including link functions to specify logit, Poisson, negative
binomial, duration (survival) and multinomial models may be specified™.



RANDOM VERSUS FIXED EFFECTS

The literature on Panel data techniques places emphasis on the relative merits of treating higher
level units as random or fixed effects (for example, see Judge et al.”? and Hsiao®). For example,
model (1) above may be rewritten in a form more familiar from the Panel literature:

B(y;lx, ) =B, 5)
E(yjtlxjt,uj):[3’xj‘+8uj (6)

where; j=1,...,N, and t =1,...,T. In model (5), the individual specific effects are specified as

random effects and in (6) they are specified as a set of j-1 fixed effects to be estimated together
with the set of explanatory variables X . The choice of specification requires careful consideration
and may be determined by the data generating process and/or, the type of inference sought. If
individuals (and their estimated effects) are not of intrinsic importance in themselves, but moreover
are assumed to be random draws from a population of such individuals and that inferences
concerning population effects and their characteristics are sought then a random specification may
be more suitable. However, if inferences are to be confined to the effects in the sample only, and
that these effects are of substantive interest then the effects themselves are more appropriately
considered fixed (see for example, Hsiao”, p41).

Another important consideration in choosing between the two specifications is when an explanatory
variable is correlated with the effects. In such circumstances, a random or fixed effects approach
may lead to vastly different estimates, and again careful consideration of the model specification is
warented (see for example, Hsiao” p41, and Hausman®). The difference in the two approaches can
be viewed as one of whether the conditional distribution of u i given Xis equal to the

unconditional distribution of u ;. In the case where X is correlated withu the two approaches will

yield different estimators since E(u;) will not be constant but equal to some function of x (i.e.

E(yIx;,u;) # E(y;lx;).

The situation can be extended to the multilevel model depicted in (1). When u jand X are

correlated, and group sizes are relatively small, the iterative generalised least squares estimator for
the parameters P will be inconsistent when the number of higher level groups becomes large.

Treating the effects u;as fixed and applying a dummy variable estimator leads to consistent

>stimates. Howeyer, when group sizes are large, the two estimators can be shown to be equivalent
(see Blundell and Windmeijer*).

In the situation where an explanatory variable is correlated with the higher level effects, and the
sole concern of the analyst is the consistent estimation of the parameters associated with the
explanatory variables or the mean effect of the higher levels, a fixed effects specification has
advantages. However, in the multilevel formulation intrinsic interest lies in the estimation and
interpretation of higher level variances together with their possible modelling with random
coefficients, after conditioning on the set of explanatory variables. Higher level effects are not
viewed as nuisance parameters to be conditioned on, but are of central importance to the analysis.
Where such correlations exist the random effects specification may be at the cost of inconsistent



parameter estimation, but has benefits both in terms of the substantive exploration of higher level
effects and increased efficiency of estimation since fewer parameters are required (0'3, for random

effects, j-1 set of dummies for fixed effects). The later is particularly important in situations where
there are many higher level units, some with few level 1 observations which may occur, for
example, in clinical trails data where collection is over many sites. In such cases, higher level
effects may be poorly estimated and this, in part, is the motivation behind using a random
specification with shrunken higher level estimates. Directly modelling the correlation structure (for
example, when a higher level variance is a function of an explanatory variable) using random
coefficients may be of particular interest to the analyst, but the analogous exploration of interaction
terms between explanatory variables and fixed effects is likely to be prohibitive (due to loss of
degrees of freedom and interpretability) in a fixed effects model. For intermediate situations where
the trade off between consistency and inefficiency is unclear, application of the Hausman test®
may shed light on the most appropriate specification if substantive considerations do not already
dictate this decision.

EXAMPLE

To illustrate the use of multilevel models we use as an example an analysis of intertemporal
preferences for future health effects by Cairns and van der Pol.” Respondents were asked to
identify what future level of benefit would lead them to be indifferent between a specified benefit to
be received one year in the future and the more distant delayed benefit. Each respondent was asked
to provide estimates of their chosen future level of benefit for two different periods of delay.
Information on individual’s age, gender, long-term health, cigarette consumption, educational
attainment, and whether they were parents of children under the age of ten were also obtained. For
full details refer to Cairns and van der Pol.* From the sample data collected implied discount rates
for each respondent were calculated and regressed against the set of explanatory variables. Table 1
presents the results of comparing an OLS specification and a multilevel specification of a
hyperbolic discounting model. OLS standard errors have been adjusted using White’s method.*

For a full discussion of the results and the implications drawn the reader is refered to the source®.
However, a few points are worthy of note. First, it appears from the t ratios that although the OLS
standard errors have been White corrected, they remain underestimated, and hence the significance
of the coefficients are exaggerated. Secondly, the partitioning of the variance between that
observed across responses within respondents and that across respondents themselves allows the
intra-class correlation to be estimated. In the example here, clearly the vast majority of variation
(98%) exists across individuals. This suggests that respondents vary greatly in their time
preferences, but in comparison appear to be reasonably consistent in applying discount rates to
different periods of delay. Thirdly, the use of multilevel analysis allows the explicit investigation of
relationships operating at the level of the individual (hierarchy of responses within individuals). A
priori, it is expected that individuals will vary greatly in terms of their time preferences and how
heavily they discount future health benefits. The significance of the coefficients attached to the
variance of delay and the covariance between delay and the constant supports this view. Further,
the negative coefficient of the covariance indicates that, in general, the discount rate falls more
rapidly with respect to increasing delay for individuals with relatively high short run discount rates
compared to those with relatively low short run discount rates.

10



OLS Analysis Multilevel Analysis

Coefficient t-value Coefficient t-value

Fixed effects:
Constant 0.5224 13.05 0.4691 11.98
Age -0.0047 2.84 -0.0027 1.63
Age squared 0.000043 2.57 0.000024 1.45
Smoker 0.0328 2.52 0.0251 2.03
Delay -0.0047 4.88 -0.0038 7.91
Health -0.0230 1.76 -0.0199 1.62
Education -0.0210 1.86 -0.0156 1.41
Children 0.0146 1.39
Random effects:
Level 1:
O-z 0.0011 3.84

[2:
Level2: 0.0482 13.48
O, (variance of constant) 0.0001 926
o} i (variance of Delay) -0.0018 1143
o} (covariance  between

uy
constant and Delay)

Table 1: comparison of OLS and multilevel estimates for hyperbolic discounting model.
Model: y; = ot +Bx; +7d; +(u; +v;d; +ej)

where y;; is the response: implied discount factor for a specified period of delay,

xij

dij variable representing period of delay (termed Delay).

set of explanatory variables conditioned upon.

u; represents individual heterogeneity (variance in response across individuals after
conditioning on X is estimated).

v jdij represents a random coefficient specifying the level 2 variance is a function of the
period of delay (estimated as a variance associated with v;and a covariance between v,
and uy).

e is the level 1 error term (estimated as a variance)

A further advantage of applying a multilevel specification to these data is that the observed
heterogeneity across individuals is modelled whilst preserving degrees of freedom. Due to the lack
of multiple responses illicited from individuals, a fixed effects specification would be prohibitive in
this application. The above example provides an illustration of the type of output and interpretation
from a multilevel model. Below we outline some potential areas of application of these techniques
to health economics.

11



APPLICATIONS TO HEALTH ECONOMICS

The potential areas of application of multilevel techniques to health economics research are many.
Perhaps its most obvious application is in furthering our understanding of medical practice
variations. It is well known that these occur at all levels from individual clinicians to total health
care systems across countries (for a useful review of the literature see Phelps®, Phelps and
Mooney™, or Andersen and Mooney*) and additional evidence of its existence are unsurprising. Of
particular interest is the welfare loss associated with small area variations in treatment patterns.®®
However, the key to directing policy instruments towards producing greater health care gains
through the elimination of variations is a fuller appreciation and understanding of the magnitudes,
location, characteristics and causes of medical practice variations*’. Methods of empirical analyses
that can address such issues through a greater descriptive or explanatory examination of the
differences in the way health care is practiced and administered can potentially offer further insight
into the process of informing policy. The ability to partition unexplained variation between the
different levels of the hierarchy and to explore the characteristics of the variation observed may
provide important information concerning the origins and mechanism through which variations in
medical practice occur, their economic consequences, and how to guide policy to reduce the
associated welfare losses.

In studies of health it has been argued that there is a distinct geography of lifestyle behaviour'***
in that the contextual aspect of an individuals place of residence should not be ignored when
exploring individual health behaviour and health outcomes. It is argued that variations in health
behaviour are influenced by space and locality and that the interaction of these with individual level
characteristics are crucial to a fuller understanding of health behaviour mechanism'**°%*!. It has
been proposed that this is particularly important in studies examining health related behaviours
such as smoking, drinking, diet, sexuality and drug misuse as “these ‘lifestyles’ might be expected
to result from both individual predisposition and geographically based cultural influence’”™.
Substantive interest lies in exploring the extent to which contextual effects of areas play a role in
determining individual health behaviour once individual level characteristics (pre-disposition,
socio-economic characteristics etc.) have been adequately controlled for. The partitioning of
variation into individual and area effects together with the explicit modelling of this variation
allows such insights to be made, and the use of multilevel models is becoming a favoured statistical
tool in this area.

Such considerations have important implications for an equitable allocations of resources. Funding
formulae based extensively upon small area deprivation indicies as proxies for ill health (for
example, Jarman® and Townsend™ ) assume that the relationship between health needs (often
measured as expressed demand) and deprivation is the same across all areas. This is unlikely to be
the case, and area inequalities may remain after controlling for the compositional factors of
populations. Adopting a multilevel approach Congdon'® concluded this to be the case in an analysis
of small areas (electoral wards) within administrative districts (53 local authorities in London and
East Anglia). For both death and long term illness in middle age he found a significant area effect
associated with deprivation (in particular, the rate of unemployment and housing tenure) after
controlling for the general relationship between deprivation and morbidity observed across all
areas. Similar area effects have been observed in an analysis relating general practitioner
consultation rates and socio-economic characteristics of patients™. Such findings highlight the
potential need for some local discretion when allocating resources. The recent resource allocation
formula in England adopted a multilevel approach® to examine area variations in hospital
utilisation.
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The introduction of an internal market within the NHS has forced the health sector to become more
concerned with issues of performance which has meant that both cost and quality are relevant
concerns of providers when meeting purchasers needs. Performance or effectiveness have been
assessed in different ways to suit different audiences and include performance indicators intended
to allow the reader to draw comparisons between areas or institutions, either directly or through
reference to a mean, and efficiency measures that are more concerned about the influences of
economies of scale and scope in specialisation. Various quantitative techniques have been used to
measure performance and efficiency ranging from very crude age-sex standardised rates (for
example, Scottish Office Clinical Outcome Indicators™) to more sophisticated models grounded on
economic theory such as efficient frontier estimation (see for example, Wagstaff>’). The use of
multilevel models has created interest and debate in the measurement of performance’ and with a
little thought and ingenuity may also prove useful in frontier estimation, particularly when there are
competing levels at which inefficiency may occur.

The techniques are also likely to be of great value in panel studies of aggregate hospital level
repeated observations. The repeated nature of panel data can be viewed in a multilevel framework
with measurement occassions within hospitals forming the first level and hospitals or provider units
the hig3l616r level groups leading to the familiar panel data variance components random effects
model.

Although well established econometric techniques (fixed and random effects models) may also be
used to estimate performance emphasis in the multlevel model is placed on the estimation of the
distribution of the population of higher level effects and their interpretation, which in itself may
lead to greater substantive insight. Given a sufficiently long panel, changes in inefficiency over
time could be explicitly investigated, thereby avoiding the somewhat restrictive assumption of
constant inefficiency. The multilevel approach has advantages over some conventional repeated
measures or panel data techniques; often conventional models require a balanced design - broadly,
that the measurement occasions are the same for all higher level units of interest. These restrictions
are severe and provided measurement occasions are missing at random do not apply in the
multilevel specification.

The ‘methods should also have useful applications in evaluation studies (both observational and
RCTs) where data on cost and effects are collected over multiple sites. In such circumstances, even
with randomisation, it can be expected that the site of treatment may have an impact on the
outcome regardless of treatment the patient receives. This may result from various sources, and is
‘ikely to be due to differences in medical practice as administered by individual clinicians or
clinical management and resources dictated by provider units. However, it may also be due to
differences in subpopulations from which each site recruits and hence although patients may be
randomised to treatments at each site, they may not be representative of the general population.
Pooling data over sites without regard to such site-specific differences may lead to incorrect
inference (for example, inefficient parameter estimates). The inclusion of site as a level in a
multilevel analysis will ensure that the clustering effects within sites will be adequately controlled
for.

DISCUSSION AND CONCLUSIONS

Multilevel models are applicable to data arranged in hierarchies consisting of multiple macro units
with multiple micro units within each macro unit. The approach allows exploration of variation
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arising at different levels of the hierarchy and modelling of the correlation structure inherent in
such data sets and leads to efficient parameter estimates. Estimates of higher level effects (for
example, hospital effects), adjusted for sample size, may be obtained through residual estimation
and used as measures of efficiency. Hierarchies formed by the clustering of individuals into well
defined groups can be seen to extend beyond provider units or geographical localities to include
repeated measures. Extensions to accommodate generalised linear models allows a flexible
approach to model specification and offers researchers more appropriate tools to address the types
of data commonly encountered in health economics and more general health services research. The
potential application of these methods to health economics are many and include the exploration of
medical practice variations, examining inequalities in resource allocation, the analysis of economic
evaluation data collected alongside clinical trials, and the estimation of performance measures. The
careful application of these methods may provide researchers with a valuable tool placing emphasis
on analysis of variation, and should compliment the use of more familiar techniques that are
available in the well established panel data literature.
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Figure 1: Two level model
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Figure 2: Three level model
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Figure 3: Three level cross-classified model
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Appendix I: Covariance structure

Block diagonal covariance structure:

A, 0 0
cov(yij): . 0
0 0 A,

cl+62 o} ol

G’ :

where Aj = . . )

. c:

o’ 6 ol+c’?

Appendix IL: Shrinkage Estimators

i) MSE of W,
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ignoring negative powers of N, we have: MSE(W) = 62, an acceptable assumption for large
sample sizes.

We have:

s, +s,=1
2 2
G, +0Ogn;
and P =1
GWGB
o2n 2
B™j Gw
=8 = 2 2 S 2
G, 050, G, T 05N,
Therefore:
2. 2
o.Nn. o
— B — —_—
bs 2+012 j+c52+;2n v
Gw an w BYj

The unbiased but inefficient estimator W i is ‘shrunk’ towards the biased but efficient

estimator W . The result is a biased estimator with a mean squared error smaller than that of
W i that is:

MSE(W,,) = B[w,, -u, || ~——

—— (Longford’, p17 (1995))
Gy +n,06

and so is smaller than both &7 /n jand 62, and approches 62 /n jas o} becomes very

large and vica versa.

I» the multilevel specification e;; = N(O, c’)andu i =N(0,0 2, and hence:

sOW ; is shrunk towards zero when the within unit sample size n;is small and when the level 2

variance, as a proportion of the total variance, is small.
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Appendix III: Information about software

The following software packages are available for multilevel analyses:

MLn

Contact address: The Multilevel Models Project, 11 Woburn Square, London WC1A OSN.
E-mail: temsmya@ioe.ac.uk

Web site: http://www.ioe.ac.uk/hgoldstn/home.html

North American mirror site: http://www.medent.umontreal.ca/multilevel/

BUGS (Bayesian inference Using Gibbs Sampling)

Contact address: MRC Biostatistics Unit, Institute of Public Health, Robinson Way,
Cambridge CB2 2SR. E-mail: david.spiegelhalter @mrc-bsu.cam.ac.uk

Web site: http://www.mrc-bsu.cam.ac.uk/project/bugs

HLM

Contact address: Iec ProGAMMA, P.O. Box 841, 9700 AV Groningen, The Netherlands.
E-mail: gamma.post@gamma.rug.nl

or

Scientific Software Inc., 1525 East 53rd St., Suite 906, Chicago, Ill. 60615, U.S.A,

MIXOR and MIXREG

Contact address: Ann Hohmann, Ph.D., M.P.H., NIMH Services Research Branch, 5800
Fishers Lane, Room 10C-06, Rockville MD 20857, U.S.A.

or

Don Hedeker, Div. of Epidemiology & Biostatistics (mc 922), School of Public Health,
University of Illinois at Chicago, 2121 West Taylor, Room 510, Chicago, IL 60612-7260,
U.S.A. E-mail: hedeker@uic.edu

These programs are available by transfer from the web site
http://www.ioe.ac.uk/hgoldstn/mixreg.html

VARCL
Contact address: Iec ProGAMMA, P.O. Box 841, 9700 AV Groningen, The Netherlands.
E-mail: gamma.post@gamma.rug.nl

There is a discussion list devoted to multilevel models; to join this send the message

join multilevel firstname(s) lastname
to mailbase @mailbase.ac.uk
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